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ABSTRACT

&%\39—(

In describing the diffusion of a rectangular pulse of plasma in a
background neutfal gas the diffusion equation %%%'= D<72N predicts the
instantaneous appearance of plasma particles at an arbitrary distance from
their initial position. By considering the problem from the moments of
the Boltzmann equation it is shown that in deriving a diffusion equation it
is necessary to take particle inertia into account. An integral solution
of the resulting equation is obtained. This solution is interpreted as
implying that the flow to an arbitrary point in space consists of particles
which stream through the background gas and those that suffer a collision
in transit. The problem is also discussed by expanding the distribution
function into symmetric and antisymmetric parts and solving the Boltzmann
equation as an initial value problem. The result can be integrated to
yield the solution for the spatial and temporal dévelopment of any of the
macroscopic variables. The phenomenon has been investigated experimentally
by generating a pulsed plasma in a restricted volume and detecting its
presence at a remote point by double probe techniques. The data demonstrate
the existence of a finite diffusion velocity as well as the free streaming

and collisional characteristics of the particle flow. 661/’
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I. INTRODUCTION
In describing the relaxation of a density gradient in a gaseous
medium it is common to use the well known diffusion equation,
IN 2
=T = DV N (1)

to predict the temporal and spatial development of the perturbation. Equa-
tion (1) yields an adequate description of diffusion phenomena under most
circumstances. It is discussed in part II-A of this report. In part II-B
we examine the derivation of equation (1) from the moments of the Boltzmann
equation.l It is shown that the inertia of the particles has been neglected
in the formulation of the particle flux. This omission can be shown to
account for several physical anomalies predicted by equation (1), involving
specifically, an instantaneous initial relaxation of any density gradients.
Similar considerations have been sﬁown to apply to heat flow.2

Goldstein3 considered this problem from a statistical point of view
and showed that in general, equation (1) should be modified to a form
reminiscent of the telegraphers' equation. This result has been obtained
by several authors.lh6 Goldstein obtained a general solution of the initial
value problem and concluded that there exists a finite velocity of propaga-
tion but did not present a means of calculating its value. Huchital and
Hol‘blL obtain the telegrapher's equation by considering the first two
moments of the Boltzmann equation for the Lorentzian gas and present a phys-
ical Jjustification of the solution in terms of free streaming and collisional

1/2

particles, arriving at a result of (kT/m) for the propagation speed. It

is thus concluded that diffusion of a gas develops in space at the one
dimensional thermal speed. The specific case of a charge neutral plasma 1is

>

discussed by Shimony and Cahn” who obtain the result after postulating that

the plasma flow is ambipolar. Their result for the propagation speed is



(uaDa)l/ 2 where D, 1is the ambipolar diffusion coefficient and V_ is
an "ambipolar collision frequency".

Finally, Sandler and Dahler6 discuss the problem from the viewpoint
of the fluid equations for a binary mixture and conclude that the velocity
of propagation is equal to (p/(o)l/2 where p 1is the fluid pressure and

F the fluid density.

In part II-C, Goldstein's result for the diffusion equation is
obtained by retaining the effects of particle inertia in the Boltzmann
equation derivation. The resulting modification of equation (1) permits
a more realistic physical analysis of the relaxation of density pertur-
bations to be made. However, in part IL-D it is shown that Goldstein's
result is complete only in the very special case of a mono-energetic gas.
A technique is developed for the solution of the Boltzmann equation as an
initial value problem which yields results that are in some qualitative
agreements with Goldstein's but include the effects of a distribution of
velocities. In addition, this result can be used to determine the spatial
and temporal development of all the macroscopic variables.

The theoretical analysis therefore contains a description of the

diffusion phenomenon at three levels:

1. the Fick's Law, or quasi-steady state approach,
2. +the macroscopic approach from the moments of the Boltzmesnn equa-
. tion, and

3. the microscopic, or Boltzmann equation approach.

Quantitative analysis of the solutions indicates, however, that they
are similar under certain circumstances. An experiment has been designed
to satisfy those conditions where one would expect the modified analyses to
be preferable. This experiment is discussed in section IV, where it is

shown that the modified analyses are required to explain the experimental data.
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II. THEORETICAL DEVELOPMENT

A. The Conventional Theory of Gaseous Diffusion

If we consider the problem of & weakly ionized gas in the absence of
external forces, then the momentum equation, that is the first moment of the

Boltzmann Equation, can be shown to take the form:L

-(-%; N, m <V.>)+ Vv -1=TS = -o, UKLV > (2)
where
Ns = npumber density
m = particle mass
< 'v-s > = average particle velocity
Vg = collision frequency with neutral particles
77:._5 = f v2 T de

and the subscript "s" denotes the stB species of particle, in this case, either

electrons or ionse.

We will assume the electronic and ionic distribution functions are

very nearly Maxwellian, so that equation (2) can be approximated by

:)95 (Ns B <“‘}—s> )+ v Ns kﬂ:s = g Us 1\Is <‘—fs> (3)

It is further assumed that no temperature gradients exist, so

KT

o — _ -
3t W <T >0+ = v Ny = - N KT > ()

Now the particle flux is defined by
J7 —
/ =N < v > (5)

so equation (4) can be written
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1
B

5 e
il + KI‘S v NS v/ (6)

At this point, steady state is assumed so 3 ts = 0, and equation (6) is

= KT
R4 - S
/"y = n o Vv N, (7)
or
77, = -D v N (8)

where the definition of the diffusion coefficient, D, is obvious.
Equation (8) is generally known as Fick's Law, and is sometimes used
as a starting point in discussing the relaxation of & density perturbation.

Now the continuity equation for the sth species is

12
.
q
~

=0 (9)

Qo
ct

So combining equation (8) and (9) we have the usual result.

IQJ

=

il

S

<
no

=

(10)

ct

3

For simplicity, we consider the one dimensional case. The solution

of equation (10) is easily shown to be

oo _oAx=x!
N(x,t) = 515 f N(x',0) D’T—t e Db gy (11)
- oo

As an example, we consider

N(x,0) =

Then
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5
n T
N(x,t) = 5% NDC J/ e 4Dt dx!
And if we substitute
xX-x!' = w
we obtain
2 2
W W
xta - — X-a -
T
N(x,t) = §r_1_£ ,]3% [ e kDt dw - f e 4Dt dw
0 0
which is
+8 X-a
N(x,t) = == Jert (BZ) - erp (X2 1
‘ I { > o oDy (13)

The solutions are sketched for several values of time in Figure 1.
This solution loses plausibility, however, when it is subjected to a physical
analysis. As an initial condition, we defined a sharp pulse of gas confined
in -a ¢« x € a. However, after an arbitrarily short time interval e, equa-
tion (11) predicts that plasma particles exist in all space, - oo £ X < oc ,
as shown in Figufe 2. Of course, the density of particles is still very low
for |x] > > a, but equation (13) still implies a finite probability of
finding a particle a very large distance from x = 0, an arbitrarily short
time after t = O.

Another obJjection can be raised after considering the physical basis
of the diffusion process. Diffusion occurs only because of a gradient of
particle density. We therefore would think that a gas would diffuse only
when such a gradient exists. Let us again examine the situation for t = €
vhere € is very small. We see that the entire plasma distribution changes
in an arbitrarily short time. But is this reasonable? Certainly those par-

ticles near x = 0 can "see" no density gradient initially. Only those



particles near the edges of the plasma are aware of the discontinuity, so
only these should take part in the initial diffusion. However, equation
(13) predicts that regardless of how far a particle is from a density gradient
(2 is arbitrary) it will still be affected by its existence.

We conclude tentatively that the solution leaves some important
questions unanswered when the physical process is examined. We will show
in the next section that the complete solution to the diffusion problem is

free of these difficulties.

B. The Complete Solution for the Diffusion Equation

The difficulties experienced in the previous discussion can be traced
to the initial stages of its development. The momentum equation was written

in the form

O g =
+ = =-pl
Pt m vy v (6)
and the assumption of steady state was made, yielding
> kT
= = =V
/ o VN (7)

But the motivation for this discussion is that we are considering a

s
non-steady state situation. Since we seek an equation in 3% ° it seems
77
somewhat questionable to arbitrarily put 2;?7-= 0. In this section, there-

fore, we will solve equation (6) together with the continuity equation,

IN 77

>t +v-/"=0 (9)
i thout ng 2L _
Wl out assumning 31 = .

We take the divergence of equation (6) and the time derivative of

equation (9) to yield




K

d = KT 2 g
—a—t(V P)+ EV N=-0V-/ (lll-)
@2y 3 =,

+ (¢-/7)=0 15
3t ot (15)
Combining equations (6), (9), (14) and (15) yields

S 2. gy L, 2

3t o

or

1 A%, 9N _ o2
- + 3t - DV.N (16)

This is the result obtained by both Goldstein3 and Holt and Haskell.l
Comparing equation (16) with the previous result, equation (10) we

see that the only difference is the inclusion of the term

The next section examines the implication of the second derivative.

C. Gaseous Diffusion as an Initial Value Problem -

Solution of the Diffusion Equation

For the sake of simplicity, we consider the one dimensional problem.

Equation (16) is then

3N 3%y

1 1l oN
- + = + = ——= =0 (17)
é)x2 LD <9t2 D ot
To solve eguation (17) we assume a product solution for N,
N(x,t) = X(x) T(t) (18)




8
Equation (17) is then
Ll v _ _1 " J S
x¥=7m T *or’t (19)
Following the separation of variables technique we write the equation
for X as
i " — 2
3 X" = -k
from which
1kx
X= c(k)e (20)
Similarly we obtain the following equation for T,
T" + YT' + kK> DDT = 0 (21)
the solution of which is
_ 2y
Poe 2 [A(k) Jb(k)t B(k)e-lb(k)t] (22)
where
1
2 1 2
b(k) = /Jk VD - U (23)
A solution of equation (17) is then
2y
N(k,x,8) = e © [A(k) RLICO LR e'lb(k)t] M (21)

where k2 is the separation constant.

Apparently, each value of k leads to a different result for N.
The complete solution to equation (17) is then obtained by integrating over

k.

by
N(x,t) = e ©

t foo {A(k) eib(k)t + B(k) eib(k)t} S gy (25)

-0
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The remainder of the problem involves relating the coefficients A(k)
and B(k) to the initial conditions. If we consider these conditions to be

+t
N(x,0) and 1lim ON(x,t) (denoted by Nt(x,O)), then as shown in

t»0 9°
Appendix A, equation (25) becomes
Y

5
N(x,t) = 65 { N(x-\{%-‘ t, 0) + N(x+\/l_f—; t, 0) }

B gt x+t _kT—t |
e ’__ Jm 2 AN A2 KL
T kT N¥,0) 53 Jo[z 'sz VG- 27%- m
KT
- =t
m

(26)

- £t x+ -@—t |
27 — s 2 2
s BV g o [# Ve

1}
ta]dlf

Jar

b
2 y KT t? ol2 kT m
X- E—t
m

It is difficult to draw any conclusions directly from equation (26).
Careful evaluation of the results predicted by (26) involves choosing the

initial conditions N(x,0) and Nt(x,O).

D. Discussion of the Theoretical Solution

In order to simplify the calculation, we shoose a particularly simple

example, that of an initial 8 -function,

N(x,0) = § (x); W (x,0) =0

Then equation (26) reduces to
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L - Y KT
Wt) =% e 24 S o)+ o (e (L)
m
Y
- =4 —
y [m 1. 2" d y_m_/e_@e‘
kKT 3 ° 5t Yo |2V VX "o ® (27)
- é{t ,
+ [m ve T y&./2__}ﬂ_2
KT — I | BVer V¥ mt
It is difficult to draw any conclusions concerning the physical solution
- &t
from this result. The terms in e are misleading as they indicate a

severe damping in the diffusion phenomenon. This variation is balanced to

a certain extent by the fact that the argument of the Bessel functions is

imaginary so that they represent exponentially increasing rather than oscillatory

functions. However, before we proceed with an asymptotic expansion of the
solution, there are several points to note. Most important we observe that
equation (32) implies a propagating solution. The first term merely indicates
the original pulse moving to the left and right with the one dimensional
thermal velocity, JE%:. It should be noted that the definite integrals lead-
ing to the second and third terms vanish for x:).JE%? t, further illustrating
the propageting nature of the solution.

We see then that the first term of thé expansion can be expressed as
shown graphically in Figure 3.

The second and third terms are much more difficult to discuss. We will
therefore consider them only for x such that x2 << %%-tg, that is, reason-

ably far from the leading edges of the propagating pulse. Now since the

argument of the Bessel functions is imaginary, make use of the relation

I, (v) = ;78 3 (iv) (28)




»
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where In(v) is a modified Bessel function of the first kind.
It is relatively easy to obtain an asymptotic expansion for In(v) as

V v+ oo by the method of steepest descent. The result is

1
In(v) ~ (2+W)§ e’ V> oo (29)

Iet us consider the third term of equation (27). The difficulty is
the Bessel function

s s =

1——-——-‘
/
2 Q t2)
o] m

Jer VX T

i

By equetion (28) this is

] I |

ej_rsl_ K2 2
L (sl va ¥ -%)

So by using equation (29) we can write the entire term as

z’,ﬂ ko2 2
exp(2 ijmt x° )

—kg‘t:2 —xg—)oo
m

t
. )
m e m kT 2 2
KT CE ("”Jk:r Jm 7 - x7)

YIS
P

Now since we are taking —}% t2 > >x2, we write

Py ]
—_— 1 - =1 2
m 1 1 .\= 2 1 J X
f— = (e = . 1 -
Vi 3 (m:t)g Ve exp {5 Vit K 2
m
and
L. x2 _ L 1 x2
kT 1_‘2 2 kT t2
m m
So the result is
., L2
Lz o ¥t
2 ‘wt KT
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Similarly, we can evaluate the second term in equation (27)

And finally

Y

- =t
Nxt) T 5 e © {J(x-@ t) + J(xd%t) }

1 2
+ %(%)Z X /4Dt

The complete solution is as shown in Figure k.

In order to have a good basis for comparison with the conventional
theory, we should solve equation (26) for the case of an initial square pulse
of plasma. However, the integrals are difficult to evaluate and their cal-
culation will shed little additional light on this discussion. We can con-
struct an adequate gualitative picture by considering the form of equation (26)
and the preceeding example. The major points to be gathered are

1) The initial distribution splits and propagates along the positive
and negative x axis.

2) These propagating groups leave behind a bell-shaped residue which
flattens out slowly.

This situation can be justified by physical arguments if we keep in
mind the fact that the momentum equation, equation (6) of this paper, is
derived by an integration of the Boltzmann equation over velocity space. The
effects of a distribution of initial velocity among the plasma particles is
thus lost in the treatment above and the justification must be made from
the point of view of an "average" particle moving at a speed\ﬁ%g + Therefore,
by virtue of the symmetry of the square pulse which we are considering,

exactly half the particles are moving initially in the positive X direction
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and half in the negative x direction. Immediately after t = 0, the
two clouds pass through each other and move along the x axis. This splitting,
together with the previously noted attenuation, is illustrated in Figure 5.

Apparently the effect of a distribution of speeds among the particles
will be to "round off" the sharp edges shown in Figure 5. This phenomenon
is a complication at this stage, and further discussion of it is deferred to
the next section. i fft

We must now question the implications of the factor e 2 in the
first term. We see that it is intimately related to the remaining terms of
the solution since these vanish if )V = 0. The important point to realize
is that collisions retard the diffusion process. Diffusion ocguiﬁtonly be-
cause of the thermal velocity of the particles. The factor e 2 in the
first term must therefore correspond to a loss from the propagating pulses
due to collisions, and these particles must appear in the solution in the
residue expressed by the Bessel function terms. Physically, a group of
particles starts to diffuse according to its thermal velocity, and the motion
of these "free streaming" particles is interrupted by collisions so that some
of the particles are left behind. The complete solution is sketched in
Figures 6 and 7.

We recall the major objections to the conventional theory:

1) That is predicted a finite probability of finding a particle
an arbitrarily large distance from its point of origin affer an arbitrarily
short time, that is, an infinite velocity of propagation, and

2) That it predicted an immediate perturbation of every particle

in the gas, regardless of how far a particle might be from the density gradients.

We conclude that these difficulties are no longer present.
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However, an objection can be raised to the present approach. The
conventional theory has existed for a considerable period of time, without
having been contradicted by experiment. How then, can we justify the claims
made in the preceeding sections? The answer lies in considering the geometry
of most experiments. Of course, in a steady state situation, the two
approaches are identical as all time derivatives vanish, so we are interested
in the afterglow or pulsed plasma case. Recall that we have decided that
the average velocity of propagation of the leading edges of the disturbance
is Jgé?. A temperature of lO0,000oK is not at all unusual in a conventional
gas discharge. The associated diffusion speed is then 1.23 x lO6 meters/sec.
s0 that on a discharge tube of radius 1 cm, the plasma has propagated to the
edges of the vessel in 8.1 x lO-9 seconds! The only diffusion phenomenon
that is observed after this time is what we have called the "residue" in the
preceeding discussion. And at a sufficient distance from the leading edges
of the pulse, (x<<\JE%?t) the shape of the residue is asymptotic to that
predicted by the conventional theory, i.e.

2
X

residue o~ L e— LDt
t172
We would, however, expect some discrepancies between the two theories

when the discharge tube is so long as to allow considerable time for the

disturbance to propagate. This possibility is discussed in Section IV.
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III. SOLUTION OF THE BOLIZMANN EQUATION AS AN INITIAL VAIUE PROBLEM

In the preceeding section we have shown that retaining the concept of
particle inertia results in a significantly more complete description of the
diffusion phenomenon. However, we must also concede that this extension falls
short of being a complete discussion. The deficiencies of the theory are
pointed out most clearly by the fact that it predicts that all the streaming
particles move with velocity"Jggg despite the fact that a velocity distri-
bution was postulated. This anomaly stems directly from the nature of the
macroscopic equations. The first n moments of the Boltzmann equation con-
tain (n+l) variables. For example, the first two moments, the equations
of continuity and flow, contain three macroscopic variables, density, flux
and pressure. In order to solve the set of macroscopic equations it is
necessary to truncate the series. This is usually accomplished‘by assumptions
of the form of the variable of highest order which relate it to the lower
order variables. In our example of the first two moments, the pressure was
assumed equal to nkT. It is apparent that this statement is difficult to
Justify for this problem. In addition, temperature gradients were neglected
to avoid introducing temperature as a third variable.

In this section we will eliminate these difficulties by taking a more
general view of the problem and solving the Boltzmann equation rather than
the moment equations. The result of this approach is quite general and can
be used to discuss the development of'any of the mecroscopic variables.

A. The Distribution Function

The problem of transport variables is directly related to the symmetry |
or anti-symmetry of the distribution function in velocity space. No flow can
result in, say, the x direction if the distribution function is symmetric

about the vx axis.
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However, discussion of the even and odd components of the distribution
function is somewhat more complex than it might at first appear. We will
show that even in the absence of external forces, the symmetric and anti-
symmetric parts are coupled, so that a net flux will arise even if the dis-
tribution function is initially isotropic.

In the absence of external forces, the Boltzmann equation takes the

form

H

2f 7. _ (2f
=T v v vE = (at)c (30)

and for gradients in the x direction only, it becomes

<
H

(25)

3%, (31)

|

df
+vX aX—

ct

9
Let us consider splitting the distribution function into odd and even

components with respect to Voo i.e.,

(v,) = £2(v) + £5(v,) (32)
where

£9(=v ) = -fo(vx) (33)

fe(-vx) = £°(v,) (34)

It may not be obvious that the expansion defined by equations (32),
(33) and (34) is complete. We can prove completeness rigorously be defining

~e ~o
the quantities f (k) and f (k) as follows:

") = ;n f f(a) sin ko do (35)
T (k) = —& f £(a) cos ka do (36)
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Then £° (vx) and fo(vx) are determined by
=) o0
(o} 1 ~o . 1
(v = -/. f7{k) s kv dk = '—-'/i/‘ f i i
( x) N J (k) sin X o (@) sin ka sin kv dk do
- 0o
(37)
<0 (=" o]
) = L f AfJ‘e(k) cos kv dk = = f f(a) cos ka cos kv, dk do
X 42 X 29 b’
- Qa0
- (38)

Equations (37) and (38) apparently satisfy the conditions of equations

(33) and (34).

as follows:

£2(v,) + £5(v,)

We can therefore write

0 e
2f L 25
Dt ot

And as shown in Appendix 3

g’ﬁ

So equation (39) becomes

2£° | 3"
3t 3t

+

1
If we now multiply equation (40) by =—

over k and Q, we have

(£%£%) } =

Finally we can readily prove the completeness of the expansion

2%{ f7 f(a) cos k(a-vx) dk do

=]

[ 2@ (@) @ -

e
-—

f(vx)

the Boltzmann equation in the form

o e
o f 8 A e o, .e
Vx Jx +vx I3x 3t (£ +f)} (39)
c
-v£°
9 £° 215 o
Yx 9% * s @>x -yt (40)

sin k& sin kvX and integrate

27
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3£ o £°
ot X X

Equations (41) and (42)

an initial value problem.

= -vf° (41)

1
on cos ka cos kvx and integrating yields

=0 (k2)

enable us to solve the Boltzmasnn equation as

B. 8Solutions for fo and fe

We can combine equations (41) and (42) to obtain partial differential

equations in f° and f° individually,

2.0
Q
= v . £ (43)
X
2.e
- ‘;fz (k)
X

However, it is important to note that fo and fl are still related

by the initial conditions. If these conditions are

fo (V)x: O)

fe (V:X;O)

lim :;% £0(v,x,t) (denoted by fto(v,x,o) )

t> 0

lim Eg% £2(v,x,t) (denoted by fte(v,x,o) )

t2> 0

then according to equations (41) and (42), they are related by
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£ %(v,x,0) + v 2 £%(v,x,0) = - » 9 0) 4
t »X, X PX 12X, = VX, ( 5)
T e(v x,0) + v <2 fo(v x,0) = 0 (46)
.t 24D X ax 4 -

Let us consider the problem of an initislly isotropic distribution

function. Then

fe(v,x,o)

n(x) F(v)

fo(v,x,o) 0

The remaining initial conditions are determined from equations (45)

and (46) to be

]

fto(v,x,O) -V, n' (x) F(v)

i
O

e
ft (V,X,O) =

Equations (43) and (44) are of the same form as that discussed in
Appendix A. The solutions can be expressed as

-k

£
£%(v,x,t) = %- e 2 T(v) 2.n(x-vt) + n(x+vt) }

P2}
- £
2 x+vt
+ e2v F(v) f " n(X) —;Q:E Jo [-g% (}c;--,)')e_val-,2 ]dz\/
x-
A
2 x+vt s 1
+Ve2v F(v) [c-vt n( ) Jo[le: % (x- 5)2- e~ ]dzf
(47)
A
2 x+vt
£(v,x,t) = - eev F(v) f n'(¥) Jo[;Z% ﬁx_n2_ 212 ]d y
x-vt
(48)
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If we integrate equation (48) by parts, we find

'fft
fo(v,x,t) = - % F(v) { n(x+vt)-n(x-vt) }
- Yy
Ve 2 x+tvt x -y
r = F(v) _/};_Vt n(Y) r—-————,(x 3)2 == Jl[%% .’(x- )2_v2t2’J

So finally,

i

P(x,v,t) = e k F(v) n(x-vt)

Y
-Et

x+vt
O R N E= = P ey

t

Y

w0 [T, [4 3 [ AE Jer

x-vt

(50)

noted. In contrast with the previous result, equation (26), it may appear
that equation (50) predicts propagation of the "fast" group only along the
positive x axis. In this conhection, it is necessary to recall that v
takes both positive and negative values so that propagation in both directions
is implied. Second and most important, equation (50) predicts that each
velocity class diffuses at its own intrinsic speed. Therefore, a diffusing
gas smears out due to a distribution of initial velocities.

Equation (50) is essentially a correction to the result of the macro-
scopic approach of Section II-C. This correction is important if the spread

of initial velocities is "large" compared with the "average" speed. A

There are several important aspects of equation (50) that should be .
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further implication of equation (50) that might, under some circumstances,
be important is the point that "hot" particles diffuse more quickly than
"cool" ones. Therefore temperature gradients are immediately set up in a
diffusing gas so that it is unrealistic, in general, to discuss density
gradients without considering the associated temperature gradients. However,
the most important implication of equation (50) is as follows. In postulat-
ing that the pressure was equal to nkT, it was explicitly assumed that
the distribution function was factorable into a density in configuration
space and a density in velocity space. Equation (50) shows that this is
not, in general, true.

Finally, we should note that given the initial distribution function,
any macroscopic variable can be determined by taking the appropriate
moment of equation (50). This approach represents a considerable simplifi-
cation, as the higher order moments of the Boltzmann equation are usually

non-linear and therefore fairly difficult to solve.
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IV. EXPERIMENTAL ANALYSIS

A. Objects of the Experiment

The object of the experiment was to establish the necessity, under
certain conditions, for using equation (16) or equation (50) rather then
equation (l) to describe the diffusion phenomenon. To this end, a discharge
tube was designed permitting pulsed lonization of the gas in a specific
volume and the observation of the ionization at a remote point. The experi-
ment was based on the following specific objectives:

1) Equations (1) and (16) predict differing traces of density versus
time at a point remote from the point of origin of a freely diffusing plasma.
Reference to Figures 1 and 6 shows that equations (1) and (16) predict results
as shown qualitatively in Figures 8 and 9 respectively. Therefore, a major
objective of the experiment was to analyze the results under conditions
designed to produce a curve of the Figure 9 type.

2) One of the major points of the preceeding discussion is that the
modified theory predicts a propagating solution. Therefore, another major
objective of the experiment has been to observe and measure a finite velocity
of diffusion.

3) The preceeding interpretation of the predicted phenomenon in terms
of "free streaming" and "residue" particles calls for at least qualitative
verification. If, as has been argued, the initial peak of density does indeed
represent those particles that have travelled the complete path from ioniza-
tion point to sensing point without suffering a collision, then the magnitude
of the peak should exhibit the characteristic exponential dependence upon
pressure and length of path.

In view of these objectives, the apparatus shown in Figure 10 was

constructed.
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B. Experimental Apparatus

The éxperimental apparatus is designed for the production of a repeti-
tive pulsed plasma between a pair of electrodes and the detection of the plasma
by probes placed some distance away. Five sets of ionization electrodes are
provided and numbered as in Figure 10 so as to provide variability of the path
length between the ionization and sensing ports. The distances from these

4
electrode sets to probe set A A are as follows:

22
Electrode set E - 6.7 centimeters
D - 9.8 centimeters
Cc - 13 centimeters
B - 17 centimeters

A - 21 centimeters

A number of points concerning the mechanics of the experiment are

worthy of mention. The presence and approximate density of the plasma are

a conducting medium between probes A and B causes a potential to appear
across Rl- It was found that the clarity of the resulis was considerably
improved by differentiating this potential.

Pulsed ionization of the gas was accomplished by exterior electrodes
for two reasons:

1) Mounting the electrodes exterior to the cell permits great flexi-
bility in determining their distance relative to the probes.

2) Exterior mounting eliminates direct current conducting paths from
the ionization to sensing electrodes.

However, in order that ionization by external electrodes be possible
without prohibitive pulse sizes, it was necessary to provide a source of

primary electrons from an independent source. This was accomplished by
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maintaining a very low level dc discharge across the tube between electrode

BO and ground. The dc current was maintained at approximately .0l ma. At
this level, no visible glow was apparent. Finally, the dc discharge was
operated with the anode grounded in order that the potential at which the
probes float, i.e. the plasma space potential, be as close to ground potential

as possible.

C. Experimental Results

The first series of measurements was aimed at comparing the shape of
the probe curve with that predicted in Figure 8. As previously explained,
the shape is a sensitive function of both the neutral gas pressure and the
distance between the ionizing electrodes and sensing probes. Figure 11 is
presented as an example of the results obtained. In this case, the system
pressure was 0.35 Torr and the electrode spacing was 13 cm. It should be
noted that both a sharp initial group indicating the free streaming particles,
and a smooth secondary group indicating the residue particles, are observed.
The interplay between these two groups as a function of pressure is demon-
strated by the series of photographs in Figure 12. As expected, since the
initial peak represents these particles which traverse the path without any
collisions, the size of the peak is greatest for low pressures and seems to
disappear altogether at higher pressures.

The effect of increasing the length of the diffusion path is very
similar to increasing the pressure as both procedures result in greater
probability of collisions with neutrals. The series of photographs in Fig-
ure 13 was taken at a pressure of 0.3 Torr. The length of the diffusion
path for each sample is indicated. The similarity between Figures 12 and
13 should be noted.

Finally, an attempt to determine the velocity of propagation has been
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made by detecting the appearance of the leading edge of the free stream-

ing particles originating from the various sets of electrodes. This attempt
was complicated by the fact that the initial condition included some elec-
trons with very high velocities. And according to the discussion of Section
ITT, these stream between the probes too quickly to be measured. Despite
this situation it was possible to determine a propagetion speed for the bulk
of particles. The result is shown in Figure 1lhk. The velocity was calculated
to be approximately 8 x lO5 meters/second. Further, the change in the slope

of the leading edge is evidence of the effect of a distribution of velocities.

D. Discussion

The results presented in the preceeding section would appear to verify,
at least qualitatively, both the differential diffusion equation, equation (16),
and its integration to equation (31). The two representative groupings, into
"fast" and "slow" particles can be observed for a variety of pressures and
diffusion path lengths.

As presented here, the effect of increasing the path length, as shown
in Figure 13, is an immediate consequence of equation (31) as this equation
predicts an exponential damping of the leading edges of the diffusing gas.

The interpretation of this data as "fast" particles representing free stream-
ing and "slow" particles indicating collisions is justified qualitatively by
the data in Figure 12. Here the number of fast particles reaching the probes
was shown to decrease rapidly with increasing pressure, while the number of
particles in the residue is greatly enhanced. Interpreting Figure 12 accord-
ing to the preceeding discussion, we conclude that at a pressure of 0.2 Torr,
almost all the particles reach the probes without suffering a collision, while

at O.4 Torr, the reverse is true.
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Figure 1l shows the difference in the arrival time of fast particles
for two different electrode sets. An accurate determination of the velocity
of propagation is difficult because of its large magnitude, and the tendency
of the leading edge to damp quickly with distance.

The magnitude of this velocity (8 x lO5 meters/sec.) leads to some

tentative conclusions regarding the nature of the flow. If the detected

_ | kr®

= >
Velectron ~ e 8 x 10° meters/second.

flow is electronic, we must set
This implies an electron temperature of some 43,OOOOK. Though this may seem
somewhat high for a room temperature experiment where the electric fields
are perpendicular to the travel, it should be recalled that the large charge
to mass ratio of an electron makes only a very small electric field necessary
for electrons to reach this temperature. And one would suppose that the
large applied fields involve sufficient fringing to provide the necessary
energy.

On the other hand, it might be postulated that the flow is ambipolar

in nature. This situation is discussed in Appendix B. It is shown that the

velocity of ambipolar flow is approximately within the mass ratio
) 1
+ -
kT T
= | — 1+ =
Va JM \/ T

- +
where M is the ion mass and T and T are the electron and ion temper-

atures. From this, it can be easily shown that in order for ambipolar flow
to reach a velocity of 8 x lO5 meters/second, the electron or ion temperature
would have to be of the order of lO9 OK. We conclude therefore, that the

detected response indicates mainly electronic flow.
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V. CONCIUSIONS

This paper has presented an extension of the conventional theory of
nonequilibrium gaseous diffusion. It has been shown that the development
of the conventional theory incorporates certain assumptions and the proposed
modification involves a derivation without them. The conventional theory
runs into two difficulties when the initial condition of a square pulse of
gas is considered. The standard differential equation integrates to indicate
first an infinite velocity of diffusion, and second an instantaneous de-
formation of the entire gas, regardless of how distant any density pertur-
bations might be. Neither of these difficulties is experienced with the
modified theory.

The modified diffusion equation differs from the conventional theory
in being second rather than first order in time. Integration of this equa-
tion has led to the following physical description of the diffusion process.
Diffusion occurs solely because of the thermal motion of the particles.

The outer limits of the diffusing gas therefore expand at the thermal speed.
The chief effect of collisions with massive neutrals is to remove colliding
particles from the "fast" expanding edges and leave them in a bell-shaped
residue which continues to diffuse outward. The observation of the diffusion
of a gas at a point remote from the point of origin, can then be divided

into three time periods:

1. where no diffusing gas is detected until gaseocus particles, moving

at the thermal speed, can reach the observation point,

2. where the "fast" particles, i.e. those particles that do not

suffer a collision in transit, arrive, and,

3. where the "slow" residue, representing those particles that have

suffered a collision(s), arrive.

Any discussion of gaseous diffusion is basically an initial value
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problem. This consideration is important in the conception of an experi-
mental verification of the above because of the considerable difficulty one
would experience in establishing known initial conditions. The experiment
described in this paper is thus largely qualitative in nature.

The experiment provides for the establishment of a repetitive,
pulsed plasma in a specific region of space and its detection by means of
double floating probes a finite distance away. The length of the diffusion
path, that is, the distance between the ionizing electrodes and detecting
probes is a variable.

As shown in Figure 11, the "fast" and "slow" particle groups predicted
theoretically are, in fact, detected. And the characteristics of these
groups as the background pressure and diffusion path are varied, justifies
their interpretation as "free streaming" and "collisional" particles.

A finite time gap before the arrival of the initial particles has been
detected, Jjustifying another aspect of the theoretical argument. The velocity
of propagétion has been measured by considering the difference in this time
delay for two different lengths of diffusion path. The velocity has been
determined to be approximately 8 x lO5 m/s in this experiment. The magnitude
of the streaming velocity indicates electronic, as opposed to ambipolar,

flow.
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VI. AFPPENDICES

A. Integration of the Diffusion Eguation

In Section IT-C, we showed that a general solution of the diffusion

equation takes the form

W& o0
NGet) - 6 2 v f {A(k) 1PNt | 5oy o mib(k)E } Jk

-0

The remainder of the problem involves relating the coefficients
A(k) and B(k) to the boundary conditions.

Iet us denote the initial density and time rate of change of density

by
. o N(x,t
N(x,0) end N, (x,0) = JRELS —é%
Then
N(x,0) = f {A(k) + B(k) Z e g
Nt(x,O) = ZA(k) (- ’5’+ ib) + B(x) (- 32-)- ib) } eI gk

Combining these two relations,

o0

Nt(x,o) + (§+ iv) N(x,0) = 2i f A(kx) b(k) e g (51)
N, (x,0) + (g - ib) N(x,0) = -2i f B(k) b(k) ™ ax (52)

We now multiply equations (25) and (26) by e 1%  and integrate

over X, while noting that
o
f ) 4y L on d (x-a) (53)
- OO0

So we find




30

Ala) = T&%T&)‘ f {(b-i ‘5)) N(x,0) -i Nt(x,o) } eI g4y (54)

Bla) = )m—%(&-)- f {(b+i ‘5)) N(x,0) + i Nt(x,O) ? oL

And after some minor simplification, we can write

P

- —-t; PVa
N(x,t) = ff N(a,0) (X)) vt ax dn
X
2 .
+ ff L N(a,0) eik(x=a) S bt 4k aa
-—
- é{t oo
e ik(x-) sin bt
+ ff 2 Nt(a,O) e =4 dkdo

where « .is a dummy variable.

For the sake of clarity, we represent this by

N(x,t) = I, +I,+ 13

Now by definition

. / ' /2 Y’
sin bt sin y»D t Jk™- D
b - 1 !
| Jop i@ - 2

S‘t:ratton7 shows that this can be written

(55)

(56)

(57)

(58)

sin bt Y - ] -ikp
sl Bt 1/D ‘/ yDt ap

2@’5‘

Therefore
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- gt \/th o9 oo
I, = 597 f ap /dkf Bla,p) 1E(xa-B) 4
_,[ Dt oo
- -
(59)
where
i 1 [Y [2_ 02 J
la,8) = » N (2,0) T [ 5VyD B -udt
The quantity inside the brackets is in double transform form and is
1
5n B(x-p,p)
So

P
I _e-eJc (J)—D’cN( 0 [;.JZ' Je 2] 6
3= 55 o (x-8,0) I | 5 Y5 (B - Dt [dap  (60)
- YuDt

And if we substitute Y = x-B

Y X D1 _
I3=e22t f +y Dt . JO[% JDM J(x-b’)z' Dt?]dzf

x-\]th
(61)
By inspection, we can write further,
- -)-)t x+ JI-)TDt
e 2 1 JE \l 2 2
I, - n N(J¥ ,0) Jo[ >\D (x-&)°- Dt ]da’
X- \/))Dt
(62)
Further, we note that
Y V.
- =% =t
_ 2" 3 1 2
I, = 2e 3t v ¢ b

s0

I, = % [ N(x- YU Dt,0) + N(x+ Y p Dt,0) }

+% e N( X ,0) Sa‘t' Jo[ %Jg /(x-zr)2 - var® ]dl(

x- VDt
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and finglly
.Yy
2
N(x,t) = = 5 }N(x- VpDt,0) + N(x+JDDt,0) Z
- %% x+vzfﬁt
) 1
+e2 \/k% N(¥,0) 5% Jo[ 5 %}J(x 7)%- vot? ]da’
x-JE;Bt
U \{-—
—-é-t x+ YV Dt
PRe— % N(X,O)Jo[%' o J(X-J)E-VDt2]dX
i X-yuDt
-5t x+ U Dt
e m 1 Jp 2
+ & \/{&-'/ Nt(X,O)JO[E‘/D-J(x-J) - LDt Jdb’
X-J:7ﬁt
(63)

B. The Collision Terms

If we assume that the particles described by the distribution function
f suffer collisions only with particles described by a second distribution

function f', then the collision term can be written as
af - 1 1
39 = (£ f' - £ £') gp dp df de (64)
c

where
~ e
f (£') 1is the post collision value of £ (£')
g is the relative velocity of the primed and unprimed particles
is the impact parameter

is the azimuthal angle

In order to simplify equation (64) it is necessary to make further
assumptions concerning the types of particles involved. If f is to be

the distribution function of an electron gas colliding with a gas of massive




.

33
neutral molecules described by f', then it is reasonable to assume that
f1 = 1

That is, that the neutral gas is not effected by collisions with

electrons. Noting further that

nt = f ft! det

we can write equation (64) as

af

58 - n'ff (f - £) gp dp ap (65)

If we now follow the method of section IIT and expand f into symmetric

and antisymmetric parts, we see

(;—i)c =n'ff (z° - £°) ep ap ap + n'ff(§°-f°) gp dp dg

That is
f o150 3 £°
(E)c = (= . + 55 )c (66)
9

Now it has been shown” that spherical harmonics constitute a set of

proper functions for the collision operator, that is, if we expand f accord-

ing to
f = Z fl P»(' (cos 8) (é7)
£
that
af
(.a_t)c = - Z V(’ f:? E’e (cos 8) (68)
X
where
Y. =e2nn'o f [ (cosI)dep . (69)
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and X is the scattering angle.

We therefore expand fo and fe according to

£ = Z f; P2;2 (cos 8) (70)
© - ; f; Py pe1 (cos 8) (71)
so that
9 £°
(5% )c = -; Yy, fj By (cos 8) (72)
(0]
(5% ) - '; Vo a1 fe Foger (0% ©) (72)

where the U's are determined by equation (69). Now if the collision process

favors small angle scattering, the higher order anisotropics, i.e., hieher

values of ,@ , are destroyed quickly so that we can write

RO (73)

£~ foo P, (cos 0) (74)
and

)~ 7

<-§—§3>c ~ -V f°

Now from equation (69) we see immediately

p_ =0 (75)

[¢]
o0

L = en No f (1-cos X ) p dp (76)

o

L
i




-

35

It 1s interesting to note that J{l is the collision frequency for

momentum transfer.5 Therefore

C. Non-Eguilibrium Ambipolar Diffusion

We write the time dependent forms of the continuity

for both electrons and ions:

BElectrons

iN__f.V.p = 0

(Dt

—

o/
2t

m

Ions

R +
I N )L
33 + V =0

277
>t

M + K" g N -NeE

+ kT VN +NeE=-my /

_ Mz)+ [7+

(77)

(78)

and flow equations

(42)

(43)

()

(45)

- +
Here, i and )/ represent the electron-neutral and ion-neutral

collision frequencies respectively.

We make the standard assumptions of quasi-neutrality and ambipolar

flow,
N = N =N
Pt =T
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So equations (43) and (45) become

3/ - .

m S + T VN+NeE = -mp |/ (46)
S

Mg—ti- + WI'oN-NeE = -My /1’ (47)

Adding equations (46) and (47)

,
wr1) 2L vk @)U = - @) 7 (8)

>

Now combining equation (h8) with the continuity equation,

N )
yields
m+ M :| oy, 2N _ k(T_+T+)? 2, (50)
my- + Myt 3 2 Pt my Myt vV ’

This is of the form

1 a
—_— + =—— = D N 1
Y S5t \% (51)
where
- .+ +_ - -+
8, kT +XT D + D
p - B - BE— bk (52)
my + Mp TR V]

is the usual result for the ambipolar diffusion coefficient, and we define

the effective ambipolar collision frequency by

a M))++mu_ N ++
v - M+ m =V

T (53)

Compering equation (51) with equation (16), we see that the ambipolar

diffusion speed is
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& = z)a. 2
EEEEEE— rm ' ?
- + + -
- I +T KT I
= \/k — = JM J1+ — (54)
T
In the case of an isothermal plasma we have
——-1 )
a kT +
v %\l—é j-M— = {5 v (55)

and the gas diffuses approximately at the ion thermal speed.
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Figure 2.

Conventional Theory for Diffusion of a Rectangular

Pulse of Gas at Time t=e.
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Figure 3. Partial Solution for the Diffusion of an Initial C-Function.




L1

*uoT3oUNg~ .w TBI3TUT UB JO UOTSNIIIQ SY3 IOJ UOTINTOg e1a1dmoy  * aangrg

T g%t

X




. 7

.

co8Tng JIBTNIuBLOSY TBTFTUI UB JO UOTSNIJIQ SUJ IO0J UOTANTOS TBIIIB °§ 8aInBtg

HpAmpAmp
€2 -1 °3 =1
XJu» v x v
N N
Ty =g 0=1
X X
N N




b3

(SuTT pPe330pP) *supIssy TRUOTSITTO) $4T pue dnosn SUTweaIlg 899I oYJ *g 2an3Td

-




esTng JRINSUBYOsy TBIFTIULI UB JO UOTSUIITQ
J0J suorqenby oTdoosoxowy SYJ WOIJ aowpﬂ.mom sqerdwo) +) s2anITJg

Ta< % < by
€124 °y =1
) S Y hk g
N N
Ty =g 0 =3

X X
N [




45

DENSITY

Figure 8.

s el —————

TIME

Development of Density vs. Time as Predicted by

the Conventional Theory.
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Figure 9. Development of Density vs. Time as Predicted by
the Modified Theory.
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Top Trace:

Bottom Trace:

Probe Response
Tonizing Pulse

20 microseconds/cm.

Figure 11. Sample of Data Obtained.




Figure 12.

Figure 12a:
Top Trace:
Bottom Trace:
Scale:

Figure 12b.

Figure 12ec.

kg

Pressure = 0.20 Torr
Probe Response
Jonizing Pulse

20 microseconds/cm

Pressure = 0.35 Torr

Pressure = 0.40 Torr

Probe Response for Various Gas Pressures.




50.

Figure 13.

Figure 13a: 9.8 cm. separation
Top Trace: Probe Response
Bottom Trace: Ionizing Pulse

Scale: 20 microseconds/cm

Figure 13b. 13 cm separation

Figure 13c: 17 cm separation

Probe Response for Various Electrode Separations.
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